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I. COMPUATIONAL COMPLEXITY

Let X1, . . . , Xm, . . . , XM , where Xm ∈ Rn×dm , be M
different modalities of a multimodal data set, all measured
on the same set of n samples. Let dmax = max{dm} and

d =
M∑
m=1

dm. Let the integrated data matrix X̃M obtained by

concatenation of features from all the modalities be given by

X̃M =
[
X1 . . . Xm . . . XM

]
. (1)

The proposed SURE algorithm to construct the joint
eigenspace Ψ(X̃M ) of the integrated data is described in Sec-
tion III-C of the main article. The computational complexity
of the SURE algorithm is analyzed as follows:

In the proposed algorithm, for each modality Xm, a SVD
problem of size (n × dm) is solved in step 2. The SVD
problems on the individual modalities are independent of each
other and can be computed parallelly for all the modalities.
This time complexity is bounded by the time required for
the largest modality, that is, O(min{nd2max, n2dmax}) =
O(n2dmax), assuming n < dmax due to the high dimension
low sample size nature of the data sets. Similarly, performing
k-means on the left subspace U(Xm) of Xm and computation
of its relevance Rel(Xm) from the clustering solution, in steps
3 and 4 can be done for all the modalities in parallel. The
k-means clustering on (n× k) matrix U(Xm) has time com-
plexity of O(tmaxnk

2), where tmax is the maximum number
of iterations the k-means algorithm runs and k << n. Compu-
tation of Rel(Xm) takes O(n) time, owing to the computation
of within-cluster variance in U(Xm). Thus, for M modalities,
the time complexity of steps 1-5 is bounded by that of
the largest modality, that is

(
O
(
n2dmax + tmaxnk

2 + n
)

=
)

O(n2dmax).
After computation of individual eigenspaces in steps 1-5,

concordance { between every pair of modalities is computed
in step 6. This involves computation of normalized mutual in-
formation which takes O(k2) time. Step 7 has time complexity
of O (M) to find the modality with maximum relevance. Steps
8 and 9 are assignments operations which take O(1) time. For
the remaining modalities, the loop in step 10 can execute at
most (M − 1) times. On m-th execution of the loop, there
are (M −m) candidate modalities for the eigenspace update.
For each candidate modality, its average concordance {̄ with
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the formerly updated ones is computed in step 12. This has a
complexity of O (m). For (M −m) candidate modalities, the
total complexity of steps 11-13 is O (m(M −m)). The one
with maximum average concordance is chosen in O (M −m)
time. If its average concordance {̄ is greater than threshold τ
then the eigenspace is updated in steps 16-27.

During eigenspace update, steps 17-19 consist of concate-
nation and union operations which take at most O(dmax)
time. Step 20 takes O(nk2) time to compute the matrices
I, P , and Q. The Gram-Schmidt orthogonalization in step
21 has complexity of O(nk2) for (n × k) matrix Q. To
find t in step 22, the norm of the columns of Q is com-
puted, which takes O(nk) time. Step 24 requires solving
the SVD problem of (20) of the main article, which is of
size at most 2k × d and has time complexity of O(k2d).
U(X̃m+1) in step 25 computed in O(nk2) time. Steps 26
and 27 have constant complexity of O(1). Hence, the total
complexity of steps 16-27 for updating the eigenspace is(
O(dmax + nk2 + nk + k2d+ nk2) =

)
O(k2d). Therefore,

time complexity of updating the eigenspace in m-th iter-
ation of the loop in step 10 is

(
O(m(M −m) + k2d) =

)
O(k2d). Step 10 is executed at most (M − 1) times which
gives a total complexity of O(Mk2d). The overall com-
putational complexity of the proposed SURE algorithm is(
O(n2dmax +Mk2d) =

)
O(n2dmax), assuming M,k <<

n < dmax. Thus the time complexity is bounded by that of
individual eigenspace construction in steps 1-5.

II. EVALUATION OF INDIVIDUAL MODALITY

This section describes the two modality evaluation mea-
sures, namely, relevance and concordance. While relevance
assesses the quality of cluster information provided by each
modality, the concordance measures the amount of cluster
information shared between two modalities. Let Xi ∈ Rn×di
and Xj ∈ Rn×dj be two modalities of a multimodal data set
whose rank k eigenspaces are given by

Ψ(Xi) = 〈µ(Xi), U(Xi),Σ(Xi), V (Xi)〉; (2)
Ψ(Xj) = 〈µ(Xj), U(Xj),Σ(Xj), V (Xj)〉. (3)

A. Relevance

As described in Section III-B of the main article, the
relevance of a modality is defined in terms of the compactness
of the cluster structure embedded in the left subspace of its
eigenspace. The compactness of cluster structure of modality
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Fig. S1: Variation of PVE and F-measure for different values of threshold τ for CESC, GBM, and LGG data sets.

Xi is given by the percentage of variance explained (PVE)
by a partition of its left subspace U(Xi). Let the projection
of the n samples in the k-dimensional left subspace U(Xi)
be given by U(Xi) = {xi1, . . . , xip, . . . , xin}, where xip ∈ Rk.
Let Ci = {Ci1, . . . , Cij , . . . , Cik} be a partition of U(Xi) into k
clusters. The PVE in U(Xi) by the partition Ci is given by the
ratio of between-cluster variance in Ci to the total variance of
U(Xi). The total variance is the total sum-of-squared distance
of each sample from its mean, given by

T(U(Xi)) =

n∑
p=1

||xip − x̄i||2 (4)

where x̄i is the mean of U(Xi). Since U(Xi) contains
principal subspace projection of data in Xi, the projection
values in U(Xi) have zero mean. Hence, x̄i = 0. Moreover,
the columns of U(Xi) are orthonormal to each other, therefore,

T(U(Xi)) =

n∑
p=1

||xip||2 = ||U(Xi)||2F

= trace(U(Xi)
TU(Xi)) = trace(Ik) = k,

(5)

where ||A||2F denotes the Frobenius norm of matrix A. The
within-cluster variance of partition Ci is the sum-of-squared
distance of each data point from its cluster centroid, given by

WCi(U(Xi)) =

k∑
j=1

∑
xi
p∈Ci

j

||xip −mj ||2 (6)

where mj is the centroid of cluster Cij . The between-cluster
variance in Ci is obtained by subtracting the within-cluster
variance in Ci from the total variance of U(Xi). Thus, the
PVE in U(Xi) by the partition Ci is given by

PVE(U(Xi)) =
T(U(Xi))−WCi(U(Xi))

T(U(Xi))
. (7)

The relevance of a modality Xi is given by the PVE in U(Xi)
as follows:

Rel(Xi) = PVE(U(Xi)) = 1− 1

k
WCi(U(Xi)). (8)

The relevance measure gives a value in between 0 and 1 with
higher value indicating better cluster structure.

B. Concordance

The concordance measure is based on the normalized mu-
tual information (NMI) between the cluster assignments of
two modalities. Let Ci and Cj be k-partitions of the subspaces

U(Xi) and U(Xj), respectively. The concordance { between
Xi and Xj is given by the NMI between the cluster solutions
Ci and Cj , given by

{ (Xi, Xj) = NMI(Ci, Cj). (9)

NMI is defined as follows:

NMI(Ci, Cj) =
2 I
(
Ci, Cj

)
[H(Ci) + H(Cj)]

; (10)

where H(Ci) is the entropy of Ci and I
(
Ci, Cj

)
is the mutual

information between Ci and Cj , which are as follows:

H
(
Ci
)

= −
k∑
p=1

Pr(Cip) logPr(Cip);

I
(
Ci, Cj

)
=

k∑
p=1

k∑
q=1

Pr(Cip ∩ Cjq ) log

[
Pr(Cip ∩ Cjq )

Pr(Cip)Pr(C
j
q )

]
;

where Pr(S) denotes the probability of the set S. The value of
concordance { lies in the range [0, 1], with larger value being
indicative of more shared information between two modalities.

III. EXPERIMENTAL RESULTS AND DISCUSSION

This section describes an unsupervised method for obtaining
the optimal value of concordance threshold τ for the proposed
SURE algorithm and empirically establishes the computational
efficiency of SURE over principal component analysis (PCA).

A. Optimum Value of Concordance Threshold

The threshold parameter τ of the proposed SURE algorithm
(given in Section III-C of the main paper) decides whether
the remaining individual eigenspaces will be considered for
updating the current joint eigenspace. At each iteration of
joint eigenspace construction, the modality having maximum
average concordance {̄, with respect to pre-selected modalities,
is taken into consideration. The joint eigenspace is updated
only if the value of {̄ is beyond some threshold τ . This
threshold prevents modalities having low concordance or
shared information with the previously updated ones from
being integrated into the joint eigenspace. Given M modalities,
different subsets of modalities get selected for different values
of threshold τ . For each data set, the value of τ is varied
in the range [0, 0.95] at an interval of 0.05. For each value of
threshold τ , the PVE by a k partition of the final joint subspace
is evaluated, which is denoted by PVEτ . The optimum value
τ∗ for each data set is chosen using the following relation:

τ∗ = arg max
τ
{PVEτ}. (11)
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Fig. S2: Comparison of execution time for PCA computed using EVD (top row) and SVD (bottom row) and the proposed
SURE approach on LGG, LUNG, and KIDNEY data sets.

It is worth noting that the upper bound for varying τ is 0.95
instead of 1.00. For τ = 1.00, a candidate modality has to
have full concordance or agreement in cluster structure with
all the previously integrated ones. For real-life omics data sets,
this is highly unlikely, and hence no candidate modality will
ever get selected for updating the eigenspace. So, for τ =
1.00, a unimodal solution, consisting of only the most relevant
modality, will be considered always. As integration of multiple
modalities can capture the biological variations across multiple
genomic levels, the threshold τ is upper bounded at 0.95 in
order to prefer selection of multiple modalities.

Fig. S1 shows the variation of F-measure and PVE for
different values of τ for CESC, GBM, and LGG data sets,
as examples. From Fig. S1, it is seen that the values of F-
measure and PVE vary in a similar fashion with the change
in τ . The PVE is calculated based on the generated clusters,
while the F-measure is computed based on the ground truth
subtype information. Since these two indices are found to
vary similarly, the optimal value of τ inferred from PVE
also gives the optimal value of F-measure, thus giving good
clustering performance. For each data set, the best value of
F-measure, obtained from all possible values of threshold τ ,
is compared with that obtained for optimal threshold τ∗. For
all data sets, the best F-measure is exactly same with the F-
measure corresponding to τ∗.

B. Execution Efficiency of SURE
One major advantage of the proposed algorithm is that it

extracts the principal subspace of the integrated data matrix
by iteratively updating the principal subspaces of the indi-
vidual modalities, and its time complexity is O(n2dmax).

On the other hand, the time complexity of performing PCA
on the integrated data matrix using eigenvalue decomposition
(EVD) of the covariance matrix is O(d3), while that using
SVD of mean-centered data matrix is O(n2d), where n <<
dmax << d. This makes the proposed algorithm particularly
efficient for PCA based dimensionality reduction of large
multimodal data sets. Fig. S2 compares the execution time
of the proposed SURE algorithm with that for extracting the
principal components using EVD and SVD for LGG, LUNG,
and KIDNEY data sets. The RNA and mDNA modalities
have large number of features such as 20,502 and 25,978,
respectively. The variation in execution time for extracting
top k principal components using these three algorithms is
observed by gradually increasing the number of features from
RNA and mDNA modalities. The plots in Fig. S2(a)-(c) show
that the execution time of PCA computed using EVD increases
quadratically with respect the proposed SURE approach. This
is because PCA using EVD takes O(d3) time which is
significantly higher compared to O(n2dmax). Fig. S2(d)-(f)
show that the execution time of PCA using SVD as well as of
the proposed SURE algorithm increases linearly with increase
in number of features. However, SURE takes significantly
lesser time to extract the principal components as compared
to PCA using SVD, especially for large data sets like LUNG
and KIDNEY with 671 and 757 samples, respectively.

Availability and Implementation:
The R implementation of the proposed SURE algorithm, along
with the description and statistical power of the multimodal
data sets, and survival analysis, is available at www.isical.ac.
in/∼bibl/results/sure/sure.html.


